Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints

نویسندگان

چکیده

Polynomial optimization problem with second-order cone complementarity constraints (SOCPOPCC) is a special case of mathematical program (SOCMPCC). In this paper, we consider how to apply Lasserre's type semidefinite relaxation method solve SOCPOPCC. To end, first reformulate SOCPOPCC equivalently as polynomial and then the reformulated method. For SOCPOPCC, present another reformulation optimization, which lower degree. SDP applied new optimization. Numerical examples are reported show efficiency our proposed

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Smoothing SQP Method for Mathematical Programs with Linear Second-Order Cone Complementarity Constraints∗

In this paper, we focus on the mathematical program with second-order cone (SOC) complementarity constraints, which contains the well-known mathematical program with nonnegative complementarity constraints as a subclass. For solving such a problem, we propose a smoothing-based sequential quadratic programming (SQP) methods. We first replace the SOC complementarity constraints with equality cons...

متن کامل

Second order cone programming relaxation of a positive semidefinite constraint

The positive semideenite constraint for the variable matrix in semideenite programming (SDP) relaxation is further relaxed by a nite number of second order cone constraints in second order cone programming (SOCP) relaxations. A few types of SOCP relaxations are obtained from diierent ways of expressing the positive semideenite constraint of the SDP relaxation. We present how such SOCP relaxatio...

متن کامل

First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this paper we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a matrix analogue of the mathematical program with (vector) complementarity constraints (MPCC) and includes MPCC as a special case. We first derive explicit formulas for the proximal and limiting normal cone of the graph of the normal cone to the positive semidefinite...

متن کامل

First-Order Optimality Conditions for Mathematical Programs with Second-Order Cone Complementarity Constraints

In this paper we consider a mathematical program with second-order cone complementarity constraints (SOCMPCC). The SOCMPCC generalizes the mathematical program with complementarity constraints (MPCC) in replacing the set of nonnegative reals by a second-order cone. We show that if the SOCMPCC is considered as an optimization problem with convex cone constraints, then Robinson’s constraint quali...

متن کامل

A Semidefinite Relaxation Scheme for Multivariate Quartic Polynomial Optimization with Quadratic Constraints

We present a general semidefinite relaxation scheme for general n-variate quartic polynomial optimization under homogeneous quadratic constraints. Unlike the existing sum-of-squares (SOS) approach which relaxes the quartic optimization problems to a sequence of (typically large) linear semidefinite programs (SDP), our relaxation scheme leads to a (possibly nonconvex) quadratic optimization prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Industrial and Management Optimization

سال: 2021

ISSN: ['1547-5816', '1553-166X']

DOI: https://doi.org/10.3934/jimo.2021030